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We use measurements of swimming bacteria in an optical trap to
determine fundamental properties of bacterial propulsion. In par-
ticular, we directly measure the force required to hold the bacte-
rium in the optical trap and determine the propulsion matrix, which
relates the translational and angular velocity of the flagellum to
the torques and forces propelling the bacterium. From the propul-
sion matrix, dynamical properties such as torques, swimming
speed, and power can be obtained by measuring the angular
velocity of the motor. We find significant heterogeneities among
different individuals even though all bacteria started from a single
colony. The propulsive efficiency, defined as the ratio of the
propulsive power output to the rotary power input provided by
the motors, is found to be �2%, which is consistent with the
efficiency predicted theoretically for a rigid helical coil.

bacterial flagellum � bacterial propulsion � propulsion matrix

Bacteria swim by rotating helical propellers called flagellar
filaments. For Escherichia coli (E. coli), these filaments are

several micrometers in length and 20 nm in diameter, organized
in a bundle of four or five. Each flagellar filament is driven at its
base by a reversible rotary engine, which turns at a frequency of
�100 Hz (1). Many important properties of the swimming
bacteria, such as their average swimming speed, the rotation rate
of the flagellar bundle, and the torque generated by the molec-
ular motor, have been determined (1–5, 23). Other properties
such as the translational and rotational drag coefficients of
flagellar bundles, however, are difficult to measure, especially
for intact cells. These parameters are significant for quantitative
understanding of bacterial propulsion and are the subject of
extensive mathematical analysis and computer simulations (6–
10). In this work, we investigate the fundamental swimming
properties of intact E. coli by using optical tweezers and an
imposed external f low. We directly measure the force required
to hold the bacterium and the angular velocities of the flagellar
bundle and the cell body as a function of the flow velocity. The
propulsion matrix, which relates the translational and angular
velocity of the flagella to the forces and torques propelling the
bacterium, can thus be determined one bacterium at a time. We
find that the population-averaged matrix elements are in rea-
sonable agreement with the resistive force theory for helical
propellers (7), but there is a large variability even among bacteria
of similar length grown from a single colony.

The propulsion matrix also allows us to determine the pro-
pulsive efficiency �, which is defined as the ratio of the propulsive
power output (the part of the power used to push the cell body
forward) to the rotary power input (the power used to rotate the
flagellar bundle). We find the propulsive efficiency is strongly
dependent on growth conditions but is not very sensitive to
cell-body size. Despite the flexibility and internal friction be-
tween the filaments in the flagellar bundle, the measured
efficiency of �2% is close to the maximum efficiency for the
given cell body and shape of the flagella filament and is
consistent with the 1–3% efficiency predicted theoretically for a
rigid helical coil (9). Our experimental technique is versatile and
can be used to make comparative studies of bacteria under
different growth conditions, mutant strains of the same species,
or different microorganisms. Such measurements can shed light

on how this remarkable ability to swim evolves among different
microorganisms.

Propulsion Matrix
Bacterial swimming occurs at very low Reynolds numbers (Re �
10�4) such that the fluid motion is governed by Stokes flow, and
nonlinearities in the full hydrodynamic equation are irrelevant.
For peritrichously flagellated bacteria such as E. coli, the
flagellar bundle may be approximated as a single effective
propeller. Despite these simplifying features, the problem re-
mains theoretically difficult because of complicated time-
dependent boundary conditions. Theoretical studies, therefore,
usually assume that the flagellar filaments have very simple
geometries such as an infinite sheet (6) or a helical coil (7, 9). For
more realistic modeling, one must rely on numerical methods
(11). A second approach is not to take into account specific
geometries but to consider general relations appropriate in the
low Reynolds-number limit for a rigid object (10). In this regime,
the torque Nf l acting on the propeller and the thrust force Fthrust
generated by it are linearly related to the propeller’s angular
velocity � and the translational velocity v (relative to the
background fluid) as follows:

�F thrust � Av � B� , [1a]

Nf l � �Bv � D� . [1b]

The above equations can be expressed in terms of the symmetric
propulsion matrix,

P � � A �B
�B D � ,

also known as the resistance matrix (12). By using the coordinate
system in Fig. 1, Fthrust and v are positive if directed toward the
head of the cell, while the sign of � and Nf l obeys the right-hand
rule; i.e., the flagellar filament is a left-handed helix. The
coefficients A, B, and D are positive, proportional to fluid
viscosity �, and depend on the shape and size of the propeller.
The basic physics is that in the absence of an applied torque, a
translating propeller under the influence of an external force
must rotate, and in the absence of an applied force, a rotating
propeller under the influence of an external torque must trans-
late (10).

The propulsive matrix description is applicable to propellers of
any shape and size. However, for a rigid helical coil, the matrix
elements can be derived from resistive force theory (7) with the
result:

A � Kn�
1 � �

�1/2 �1 � �k

�

1 � �
�, [2a]
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B � Kn� � 	

2

� 1 � �

�1/2 �1 � �k�, [2b]

D � Kn� � 	

2

�2 1 � �

�1/2 �1 � �k

1 � �

�
�, [2c]

where � is the length of the coil, 	 is the pitch, and � � cos2�
with � being the pitch angle relative to the swimming axis (see
Fig. 1c). By using 	 and �, the radius of the helical coil is given
by R � (	�2
)tan�. The quantity �k is the ratio of the tangential
viscous coefficient Kt � 4
��(2ln(c	�r) � 1) to the perpendic-
ular viscous coefficient Kn � 8
��(2ln(c	�r) � 1), where r is the
radius of the coil filament and c is a constant. For a smooth
filament, Lighthill (7) showed using a mean-field approximation,
c � 0.18 and �k � Kt�Kn � 0.7, where the experimental data
(	�r � 100) from sea-urchin spermatozoa was used (8). The helix
loses its ability to propel if �k3 1, �3 0 (�3 1), or �3 
�2
(	 3 0) as expected.

To complete the description of the swimming bacterium, we
need the propulsion matrix P0 for the cell body. Unlike P for the
flagellum, P0 is diagonal (B0 � 0) because the cell body cannot
propel itself. The nonviscous force on the cell body consists of
two parts, the trapping force Ftrap due to the optical tweezers
holding the bacteria and the thrust Fthrust generated by the
flagella. The sum of these forces must balance the viscous force
Aov acting on the cell body. Likewise, the nonviscous torque
acting on the cell body �Nf l must balance the viscous rotational
drag. The above consideration gives the following:

Ftrap � F thrust � A0v , [3a]

D0� � �N f l, [3b]

where � is the angular velocity of the cell body. We treat the cell
body as a prolate spheroid with minor semiaxis a and major

semiaxis b. If the cell body is in the bulk of the fluid, the linear
and rotational drag coefficients are then A0 � 4
�b�(ln(2b�a) �
(1�2)) and D0 � 16
�a2b�3 (13). The optical trapping force is
harmonic Ftrap(z) � �k(z � z0), where k is the spring constant
and z � z0 is the displacement from the center of the trap (14,
15). Because the bacteria is held by the optical tweezers, its net
velocity in the lab frame is 0 (v	 � v � U � 0), and the relative
velocity v to the fluid is opposite to the external f low U.
Substituting v � �U into Eqs. 1 and 3 gives the following:

k�z � z0� � �A � A0�U � B�, [4a]

D0� � �BU � D� . [4b]

This set of equations will be used below to analyze our data.

Results
We used a nontumbling strain of E. coli bacteria HCB30 in our
measurements. We found that a swimming bacterium near a
glass surface could be stably trapped by the optical tweezers
along its swimming direction. The bacterium is then manipulated
by an imposed uniform external f low U. Fig. 1 illustrates our
experimental setup along with the flow configurations. A bac-
terium swimming to the left (along the �Z direction) is held by
a strongly focused IR laser (	 � 1,064 nm). In the absence of
flow, the bacterium is invariably held at the tail of the cell body
as shown in Fig. 1a. The thrust and trapping forces are balanced,
and the bacterium is stationary with respect to the trap. The
bacterium remains trapped at the tail for small negative U (�U 

Vswim). For larger flow speeds, the bacterium becomes trapped
at the head of the cell body as shown in Fig. 1b.

To measure the trapping force and the position of the trapped
cell tip, the transmitted IR beam was refocused and projected
onto a two-dimensional position-sensitive detector. This tech-
nique allowed us to measure the position of the trapped cell tip
with respect to the center of the trap. A nonflagellated bacterium
(YK4516) was used to calibrate the spring constant k of the
optical trap. A description of the calibration and measurement
procedure is presented in Materials and Methods.

Fig. 2 displays an example of the time trace z(t) of the
longitudinal displacement of the trapped cell tip along the
swimming direction of the bacterium. We observed large oscil-
lations overlying a systematic variation of z(t) as the external f low
is changed. These oscillations result from wobbling of the cell
body in response to the rotation of the flagellar bundle (4, 16).
The trapped bacterium was perturbed by the following sequence
of events. In regime I, U is linearly reduced from �40 �m�s to

Fig. 1. Two different trapping configurations are possible. (a) The bacterium
can be trapped horizontally at the tail of the cell body in the absence of a flow,
U � 0, and for a small negative U; i.e., �U� 
 Vswim, where Vswim is the
free-swimming speed of the bacterium. (b) The bacterium can also be stably
trapped at the head of the cell body in the presence of a larger negative U, i.e.,
�U� � Vswim. The forces and velocities are positive if they are along �Z. The
rotations are defined by the right-hand rule such that � 
 0 and � � 0 as
depicted. (c) A schematic of an effective helical propeller: � is the length, 2r is
the diameter of the filament, R is the radius, � is the pitch angle of the helix
relative to the swimming axis, and 	 is the pitch.

Fig. 2. A typical experimental run for a swimming bacterium held in the
optical trap. In regime I, an uniform flow U � �40 �m�s is decreased to zero
linearly with time. The flow U remains zero in regime II. The laser is blocked
momentarily to let the bacterium escape, and the undeflected laser beam
position is recorded in regime III. The solid lines depict linear fits to each
regime.
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0 in 3 s. If the flow speed �U� is larger than the free swimming
speed Vswim, the bacterium is trapped at the head (Fig. 1b), and
z(t) 
 0. When �U� � Vswim, the bacterium swims forward,
becomes trapped at the tail of the body (Fig. 1a), and z(t) � 0.
The zero crossing point (z(t) � 0) occurs precisely when �U� �
Vswim. In regime II, U is maintained at 0 for 4 s, and the average
position of the bacterium relative to the trap is constant. Finally,
in regime III, the bacterium is released by temporarily blocking
the laser beam. The position of the undeflected beam in regime
III is taken to be zo, the center of the optical trap. From regime
I we obtain the net translational drag coefficient A � A0 �
k�z��U, and in regime II we obtain Fthrust, because Ftrap �
�Fthrust when U � 0. We checked that the measurement was
reproducible by returning the flow to U � �40 �m�s rather than
releasing the bacterium after regime II. The bacterium returned
to within a few percent of its initial average position.

We used transverse oscillations x(t), which were more pro-
nounced than z(t), to obtain the angular velocity of the cell body
and the flagellar bundle. Fig. 3a displays a sample power
spectrum E( f ) of x(t) for a short time interval of 4 s when U �
0. The power spectrum has two strong peaks at fL � 25 Hz and
fH � 124 Hz, respectively. These two frequencies can be asso-
ciated with the angular velocities of the cell body � � 2
fL and
of the flagellar bundle � � �2
fH (16). Averaging over 200 bac-
teria, we found f�L � 19.6  0.3 Hz and f�H � 115  2 Hz, where
the standard errors of the mean (SEM) are quoted. As shown in
Fig. 3 c and d, there is considerable variation of fL and fH between
individual bacteria; the standard deviations (SD) fL

� 5.4 Hz
and fH

� 25 Hz are, respectively, 28% and 22% of the mean
values. As suggested by Fig. 3 c Inset and d Inset, some of the
variation is due to dependence of fL and fH on the cell-body
length L � 2b; namely, the cell-body rotation frequency fL
decreases whereas the flagellar rotation frequency fH increases
as L is increased. Because the motor angular velocity is defined
as �m � � � � � 2
( fL � fH), we found that �m increases
slightly with L.

To test the basic physics implied by the propulsion matrix, we
measured the dependence of fL and fH on U for an additional 150
bacteria, which were subjected to flow speeds of �U � 30, 40,

50, 60, 70, and 80 �m�s. Fig. 3b shows that the average frequency
f�L increases linearly with small �U�, but the rate of increase
decreases considerably for �U� � 60 �m�s. The linear depen-
dence for small �U� is in good agreement with Eq. 4, which is an
essential property of the propulsion-matrix formulation. The
deviation for large �U� represents a nonlinear response of the cell
to the flow and is likely due to deformations of flagellar bundles
at a high speed.§ Within the noise of the measurement, no
systematic change in f�H was detected.

To complete our determination of the propulsion matrix, the
semiminor axis a and the length L of the bacterial cell body were
measured directly by video microscopy while the bacterium was
held in the trap. The procedure allows us to calculate the drag
coefficients A0 and D0 for the cell body. However, because the
bacteria were trapped approximately d � 5 �m above a solid
surface, wall effects must be taken into account. By using the
analysis of Happel and Brenner (12), the wall corrections to the
drag coefficients are given by an expansion in terms of the ratio
of the characteristic body size L to the distance d from the wall
with the result A0 � A0(�)[1 � �1A0(�)�(6
�d) � O(L�d)3]�1

and D0 � D0(�)[1 � �2D0(�)�(8
�d3) � O(L�d)5]�1. Here,
A0(�) � 2
�L�(ln(L�a) � (1�2)) and D0(�) � 8
�a2L�3 are the
bulk values when L�d 3 0, and �1 � 9�16 and �2 � 1�8 are
constants. A straightforward calculation based on the mean
bacterial size and our experimental geometry shows that A0 and
D0 are increased by 13% and 4% from their bulk values,
respectively. However, the approximation is marginal for the
largest-size bacteria studied. The above conclusion indicates that
the surface effect, although not negligible, is not significant
enough to qualitatively alter the propulsion-matrix representa-
tion. In other words, we expect that the linear relation in Eq. 4
still holds approximately and the values of A, B, and D are
moderately different from their bulk values. From the time trace
z(t), A and B are calculated by A � k�z��U � A0 (regime I) and
B � Fthrust�� (regime II). Finally, the measurements of the
angular velocities give D � �(���)D0.

The calculations were repeated for the 200 bacteria. The
average values of the matrix elements were A� � (1.48  0.04) �
10�8 N�s�m, B� � (7.9  0.2) � 10�16 N�s, and D� � (7.0  0.1) �
10�22 N�s�m. The translational drag coefficient of the flagellar
bundle is approximately equal to that of the cell body (A� 0 � 1.4 �
10�8 N�s�m). Therefore, approximately half of the drag on the
bacteria is due to the flagella. On the other hand, the rotational
drag of the flagella D� is much smaller than that of the cell body
(D� 0 � 4.2 � 10�21 N�s�m).

The theoretical expressions for A, B, and D given in Eq. 2 can
then be used to extract physical parameters of the flagellar
bundle if we treat the bundle as a single effective flagella. This
abstraction is consistent with the observation that the flow field
induced by a model rotating bundle is very close to that induced
by a rotating rigid helix of appropriate thickness (18). In
principle, the expressions in Eq. 2 should also be corrected for
surface effects. However, such corrections will be complex and
are beyond the scope of this work. Therefore, in the following
analysis, it is assumed that the measured A, B, and D are
unaffected by the surface. As we will show, important physical
parameters that are extracted from our measurements, such as
the pitch and helix length, are in reasonably good agreement with
existing measurements (19), indicating that surface corrections
to A, B, and D are moderate.

§By using simple dimensional analysis, we expect that deformation takes place when � �
Kn�3U, where � � 10�23 J�m is the bending elastic modulus (17). By using � � 7 �m for the
length of the flagellum and Kn � 10�3 kg�s�1�m�1, we estimate that bending is significant
when U � 30 �m�s. This estimate is not too far from our measured value of 60 �m�s.
However, this estimate is very rough because � is only known to an order of magnitude,
and the nonlinearity could also be due to other effects such as improper bundle formation
at high flow speeds.

Fig. 3. Rotational motion of the cell body and the flagellar bundle. (a) Power
spectrum of E( f) of x(t) shows peaks corresponding to fL and fH. (b) The
variation of the rotation frequency of the cell body fL as a function of flow
speed �U. The linear dependence is consistent with the propulsion matrix
formulation. Error bars are SEM unless otherwise noted. (c and d) The PDFs of
fL (c) and fH (d) are delineated. (Insets) The average fL and fH as a function of
cell-body length L.
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The resistive force theory for the helix coil contains four
independent parameters: the pitch 	, the pitch angle �, the
length of the helix �, and the radius r of the filament, assuming
that the viscosity of the fluid (� � 10�3 Pa�s) is known. The three
matrix elements A, B, and D in Eq. 2 are not sufficient to predict
all four parameters (	, �, �, and r). To make progress, we
assumed that the pitch angle � is 41°, as determined by Turner
et al. (19) using fluorescently labeled E. coli cells. This angle is
very close to the angle (42°) that maximizes the propulsion
efficiency of an ideal helix (7). By using our measured A� , B� , D� ,
and � � cos2(41°) � 0.57, Eq. 2 predicts �k � 0.61, � � 6.5 �m,
and 	 � 1.5 �m. The two geometrical parameters � and 	 are in
reasonable agreement with the fluorescent measurements of
Turner et al. (19), who found �� � 7 �m and 	� � 2 �m for the
normal form of flagella. The value of �k we obtained is �13%
smaller than estimated by Lighthill (7). By using our measured
�k and assuming r � 20 nm for a flagellar bundle consisting of
three or four flagella, we found c � 2.4, which is nearly a factor
of 10 greater than that calculated by Lighthill (7) using a
self-consistent argument. Surprisingly, c estimated from this
experiment is closer to the original value, c � 2, suggested by
Gray and Hancock (8).

All important dynamical quantities can be obtained from our
measurements. For example, the average thrust for U � 0 is
F� thrust � B� �� � 0.57 pN, whereas the average torque is N� f l �
D� �� � 5 � 10�19 N�m, which is close to that found for bacteria
Streptococcus (4). The calculated mean swimming speed V� swim �
B� �� �(A� 0 � A� ) � 20.4 �m�s agrees well with direct measurements
of the average swimming speed using video microscopy, V� swim �
22 �m�s. Additional measurements further showed that V� swim
was the same before and after trapping, indicating minimal
photo effects in this horizontal trapping configuration.

The propulsion matrix elements vary greatly among individual
bacteria, even though they were grown from a single colony. Fig.
4 displays the probability distribution functions (PDFs) of the
scaled quantities A�A� , B�B� , and D�D� . The SD  are significant
fractions of the means with A�A� � 40%, B�B� � 37%, and

D�D� � 27%. A conspicuous feature of the PDFs is their broad
tails, particularly for A and B. Such a feature might be an
indication of structural heterogeneities in the flagellar bundles
of individual cells or that the conformation of the bundles
changes with time. As is often the case in biological systems, the
PDFs with broad tails can be roughly fitted to log-normal
distributions that are plotted as solid lines in Fig. 4.

Part of the variations in A, B, and D must arise because the
bacteria are in different stages of their growth cycle during the
measurements. This is especially the case for the early log phase
of a growing culture, where the bacterial size is large and highly
varied. In the present experiment, the bacteria were grown to the
midlog phase (�4.5 h growth time), where bacteria are smaller
and their size distribution is narrower. However, even at this
stage, the cells are far from homogeneous. Fig. 5a shows the
cell-length distribution of the group of 200 randomly selected
bacteria. The fitted PDF (solid line) is peaked at �3 �m with an
SD of 0.8 �m. The figure also shows the smallest cell length L0
at which a septal ring becomes discernible. We used the bacterial
length L as a measure of its physiological state and determined
the propulsive matrix elements as a function of L. To improve the
statistics for large L, a centrifugation technique was used to
select long bacteria (4 
 L 
 6 �m; n � 50). We determine the
length dependence of the coefficients A, B, and D by calculating
the averaged values �A�, �B�, and �D� for bacteria of similar length
L. The results are presented in Fig. 4 Insets. The linear drag
coefficient �A� has no clear size dependence, but �B� has a small
peak at L � 3.3 �m, which coincides with the peak of the
bacterial size L distribution. On the other hand, Fig. 4c shows
that the rotational drag coefficient �D� of the propeller increases
linearly with L.

These size dependencies allow us to draw certain conclusions
about the structure of flagellar bundles at different stages of cell
growth. Inspection of Eq. 2 shows that the three matrix elements
are similar in their dependence on parameters such as the pitch
angle � (or �) and �k. Such similarity precludes the possibility
that � and �k are controlling the different L dependencies seen

Fig. 4. The PDFs of A�A� (a), B�B� (b), and D�D� (c). The solid lines are fits to the log-normal distribution P(x) � exp[�(lnx � �)2�22]�(x�2
). The fitting
parameters � and  are given in the plots. (Insets) The bacterial length L dependence of �A� (a), �B� (b), and �D� (c).

Fig. 5. Bacterial size dependence. (a) The PDF of the bacterial cell length L. The solid line is a fit to the log-normal distribution with the parameters  and �

defined in Fig. 4. The vertical line marks the smallest cell length L0 at which we observed a septal ring. (b) The flagellar power output ��� as a function of L. The
dashed line is a linear fit. (c) The propulsion efficiency ��� as a function of L. The dotted horizontal line marks the mean efficiency 1.7% of the entire population
of 250 bacteria.
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in the measurements. On the other hand, the matrix elements
depend strongly on the pitch 	 with A � 	0, B � 	1, and D � 	2.
These relationships correlate with the observation that A has the
least and D has the most L dependence. The observation
therefore implies that the primary L dependence is through the
pitch 	. One may thus conclude that both � and �k are approx-
imately constant for different sized bacteria, which is physically
and biologically reasonable. Because our measurements show a
linear relation between D and L, one can also conclude that 	2

grows linearly with L. A possible scenario is that as the cell body
elongates, more flagella are incorporated into the bundle, and
consequently its stiffness and 	 increase. From the shortest to the
longest bacterial body length (2–5 �m), we found that the
fractional change �	�	 should be �18%, which may be discern-
ible in carefully conducted observations using fluorescently
labeled bacteria.

We next turned our attention to the power and propulsive
efficiency of the swimming bacteria. The average power output
of the flagellar motors is �� � D� 0�� ��� � �� � � 4.3 � 10�16 W. The
power used to turn the cell body is D� 0�� 2 � 6.3 � 10�17 W,
whereas the actual propulsive power is another factor of 10
smaller with A� 0V� swim

2 � 5.8 � 10�18 W. Therefore, �15% of the
rotary power is used to rotate the cell body; only �1.3% is used
to push the bacteria forward; and the rest is dissipated as heat.
Fig. 5b shows the average motor power as a function of bacterial
length L. The power increases gradually with L, which is
consistent with the above discussion that the number of flagella
and the associated motors increase with L. The propulsion
efficiency �, defined as the ratio of the propulsive output power
to the rotary input power, can be related to the propulsion matrix
elements (10) as follows:

� �
A0v2

Nf l�� � ��

�
A0D0B2

��A0 � A�D � B2���A0 � A��D0 � D� � B2�
. [5]

Fig. 5c shows that the efficiency as a function of bacterial size is
nearly constant up to L � 4 �m. The average efficiency is �� �
1.7%, which is slightly larger than the 1.3% estimated above. The
discrepancy is due to correlations between A, B, and D of
individual cells, i.e., �(A� , B� , D� ) is not the same as ��(A, B, D) when
evaluated using Eq. 5. Our measured efficiencies are surprisingly
close to the 1–3% predicted theoretically for a rigid helical
propeller (7, 9). Similar measurements were also carried out for
bacteria grown to an early log phase. In this case, although the
average swimming speed is approximately a factor of 3 lower
(V� swim � 6 �m�s), the swimming efficiency reduces by almost a
factor of 10 with �� � 0.2%. This efficiency is comparable with
the �� � 0.35–0.7% found by Purcell (10) using helical coils made
of metal wires. The lower efficiency observed by Purcell is likely
due to the suboptimal pitch angle of the coils used.

We can also ask the following for a given A0: What is the
maximum efficiency attainable by the bacterium as a function of
the length of the flagellum �? Assume that at some characteristic
length �p, the propulsive coefficients of the flagellar bundle are
Ap, Bp, and Dp. Assuming that the width of the bundle is constant,
these coefficients should grow linearly with the flagellar length
� so that A � �Ap, B � �Bp, and D � �Dp, where � � ���p. This
assumption is consistent with Eq. 2. Substituting for A, B, and D
into our expression for � (in Eq. 5) and assuming B2 

 (A0 �
A)D and D0 �� D, we find that the maximum efficiency occurs
when A � A0 and �max � Bp

2�(4ApDp), which depends only on the
shape of the propeller. The same result was obtained by Purcell
(10) when he maximized � by assuming that all propeller
dimensions (not just the length) scaled with �. In our experiment,

we found that A� is approximately equal to A� 0 so that flagella are
as long as required to maximize its propulsive efficiency.

Summary
In summary, bacterial propulsion is investigated by using optical
tweezers, which allow us to directly measure the thrust force
Fthrust as a function of the imposed flow. For a free swimming
bacterium, Fthrust precisely balances the viscous drag of the cell
body A0v and of the flagellar bundle Av. Unlike the viscous drag
of the cell body, the contribution of the flagellar bundle to the
total drag is difficult to determine without direct force mea-
surements such as the one presented here. We showed that the
propulsion matrix proposed by Purcell (10) gives an adequate
description of bacterial swimming over a physiological range of
velocities. In retrospect, this finding is not obvious considering
that flagellar filaments are tenuous and are deformable because
of hydrodynamic stress induced by swimming or by flows (20, 21).
Indeed, our measurements do show nonlinear response to
changes in U when a strong flow (�U� � 3Vswim) is imposed.

We have determined all elements of the propulsion matrix and
used the resistive force calculations for a helical coil to estimate
microscopic properties of the flagellar bundle (7). The measured
geometric parameters such as � and 	 are consistent with earlier
measurements using fluorescently labeled bacteria (19). The
parameter c � 2.4 is significantly greater than Lighthill’s (7)
self-consistent calculation (c � 0.18) but comes closer to the
original estimate (c � 2) of Gray and Hancock (8). By using the
propulsion matrix, we also determined dynamic quantities re-
lated to bacterial swimming and their dependence on the size of
the cell body. In particular, we found that the propulsive
efficiency �, defined as the ratio of the propulsive power output
to the rotary power input, is �1.7%. This efficiency depends
weakly on the bacterial size but strongly on the growth condition.
The measured � is close to the maximum efficiency for the given
size of the cell body and the shape of the flagellar bundle. Our
results suggest that resistive force theory has captured essential
physics of bacterial swimming, and complications such as long-
range hydrodynamic interactions between different flagellar
filaments and of the filaments with the cell body are too subtle
to be discernible in the present investigation.

Materials and Methods
Sample Preparation. We followed standard growth conditions for
culturing bacteria E. coli strains, HCB30 and YK4516. A single
colony was picked from a fresh agar plate and grown to
saturation overnight in tryptone broth (4 g of peptone�1 g of
NaCl�0.4 ml of 1 M NaOH in 400 ml of water). The culture was
maintained at 33°C and was shaken continuously at 200 rpm. The
overnight sample was diluted to 1:100 in fresh tryptone broth and
grown to the midlog phase for 4.5 h. The sample was next washed
by centrifugation at room temperature (Model 5415D, Eppen-
dorf, Westbury, NY; 1,400 rpm, 5 min) and resuspended gently
in a motility medium [10 mM KPO4�0.1 mM EDTA�0.1 mM
glucose�0.0002% (wt/vol) Tween 20]. Experiments were carried
out after a dilution of 1:300 in the same motility medium.

Measurements. The swimming bacterium was held by a strongly
focused IR laser (	 � 1,064 nm) a few micrometers above the
glass surface. We found that in the interior of the fluid, without
flow, the bacterium could only be stably trapped in the vertical
direction, along the trapping axis. In this configuration, it was
feasible to determine the threshold of the trapping force and
relate it to the maximum of the thrust (22). However, the method
is not suitable for measuring instantaneous thrust force acting on
the cell body. The presence of a surface is necessary to hold the
bacterium in the horizontal position, and the thrust is monitored
continuously as a function of time. Although the physics of such
a stable trap is not understood at present, we believe that both
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steric and hydrodynamic interactions between the cell and the
wall play a role. To measure the trapping force and the position
of the trapped cell tip, the transmitted IR beam was refocused
by a high numerical aperture condenser (N.A. 1.5) and projected
onto a two-dimensional position sensitive detector (Model
DL100-7PCBA; Pacific Silicon Sensor, Inc., Westlake Village,
CA). The position of the trapped cell tip with respect to the
center of the trap was monitored by a PC equipped with an
analog–digital converter card (Model AT-MIO-16E-2; National
Instruments, Austin, TX). The conversion rate was 5 kHz at
12-bit resolution.

A nonflagellated bacterium (YK4516) was used to calibrate
the spring constant k of the optical trap by measuring the
position of the trapped tip as a function of the flow speed U. For
the nonflagellated bacteria, a uniform flow was necessary to
hold the bacteria in the horizontal position. The uniform flow U

was set up by translating the sample chamber, using a DC motor
controller (Model 855; Newport, Irvine, CA) and a motorized
translation stage. For an ellipsoid body, the translational drag
coefficient Ao is known, and the spring constant can be obtained
by using k � Ao�U��z. For the laser intensity (20 mW) used in
this experiment, k � 5.7 � 10�6 N�m. This calculation gives a
roll-off frequency fC(� k�2
A0) � 63 Hz, which was indeed seen
in the experiment. The noise in the output of the optical trap was
0.1 nm��Hz, for zrms � 5.2 nm and a sampling rate of 5 kHz.
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